

中华人民共和国国家标准

GB/T 17982—2018 代替 GB/T 17982—2000

核事故应急情况下公众受照剂量估算的 模式和参数

Models and parameters for calculating radiation doses to the public in the emergency of a nuclear accident

2018-05-14 发布

2018-12-01 实施

国家市场监督管理总局 中国国家标准化管理委员会 发布 目 次

前詞			Ι
1	范围		• 1
2	术语和定义		• 1
3	基本原则		• 1
4	事故早期剂量估算		• 2
5	事故中期剂量估算		• 5
6	事故后期剂量预测。	原则	• 7
附表	录 A (资料性附录)	核事故时释放的对公众成员所受剂量估算有重要意义的放射性核素	• 8
附表	录 B (资料性附录)	事故后不同阶段需要模式计算或监测的重要量	10
附表	录 C (资料性附录)	烟羽照射途径 γ 外照射剂量学参数	11
附表	录 D (资料性附录)	烟羽中放射性惰性气体对皮肤β照射的剂量学参数	12
附表	录 E (资料性附录)	空气中或皮肤表面沉积核素所致皮肤剂量转换系数	13
附表	录 F (资料性附录)	吸入放射性核素剂量学参数	14
附表	录 G (资料性附录)	地面沉积核素所致的 γ 外照射剂量学参数	18
附表	录 H (资料性附录)	组织权重因数	20
附表	录I(资料性附录)	食入放射性核素剂量学参数	21
附表	录J(资料性附录)	食入被污染的新鲜食物所致内照射剂量的剂量学参数	23
附表	录 K (资料性附录)	食入被污染的"储藏"食物所致内照射剂量的剂量学参数	25
参	考文献		26

前 言

本标准按照 GB/T 1.1-2009 给出的规则起草。

本标准代替 GB/T 17982-2000《核事故应急情况下公众受照剂量估算的模式和参数》。

本标准与 GB/T 17982—2000 相比,主要技术变化如下:

——修改了部分术语和定义;

一修改了表 A.1、表 F.1、表 F.2、表 F.3、表 G.1、表 H.1、表 I.1、表 I.3 中有关参数的部分数据。 本标准由中华人民共和国国家卫生健康委员会提出并归口。

本标准起草单位:中国疾病预防控制中心辐射防护与核安全医学所、中国医学科学院放射医学研究 所、江苏省疾病预防控制中心、深圳市职业病防治院。

本标准主要起草人:拓飞、周强、张庆、袁龙、徐翠华、张良安、徐小三、张京、李文红、马加一、王小强、 张建峰、付熙明。

本标准所代替标准的历次版本发布情况为:

——GB/T 17982—2000。

核事故应急情况下公众受照剂量估算的 模式和参数

1 范围

本标准提出了核事故应急不同阶段依据应急辐射监测数据(或由烟羽扩散模式导出的相应数据)估 算公众受照剂量的模式和参数。

本标准适用于核事故应急情况下公众所受辐射剂量的估算和评价。核设施正常运行情况下公众受 照剂量的估算和评价也可参考应用。

2 术语和定义

下列术语和定义适用于本文件。

2.1

应急 emergency

需要立即采取某些超出正常工作程序的行动以避免事故发生或减轻事故后果的状态,有时也称为 紧急状态;同时,也泛指立即采取超出正常工作程序的行动。

2.2

核事故 nuclear accident

核电厂或其他核设施中很少发生的严重偏离运行工作状况的状态;在这种状态下,放射性物质的释放可能或已经失去应有的控制,达到不可接受的水平。

2.3

事故早期 early phase of accident

由出现明显的放射性释放的先兆(即开始察觉到可能出现场外辐射后果)到释放开始以后的最初几 小时的这段时间。

2.4

事故中期 intermediate phase of accident

从开始释放放射性物质后的最初几小时,一直延续几天到几个星期的这段时间。在这阶段开始,通 常大部分释放已经出现,且大部分放射性物质已沉积于地面,但主要是惰性气体释放时则除外。

2.5

事故后期 late phase of accident

自事故中期以后延续几周到几年的这段时间。

2.6

烟羽 plume

释放到环境中的放射性物质的气载"烟云"。

2.7

再悬浮 resuspension

因土壤的机械扰动和风的作用使污染物从地面、物体表面等沉积表面返回大气的过程。

3 基本原则

3.1 核事故情况下估算公众成员受照剂量时应考虑事故不同阶段的所有主要照射途径和主要放射性

1

GB/T 17982-2018

核素。核事故时释放的对公众成员受照剂量有重要意义的放射性核素参见附录 A 的表 A.1。不同类型 核事故、不同阶段应考虑的放射性核素参见附录 A 的表 A.2。

3.2 事故早期的剂量估算应主要依靠模式计算,监测结果用来检验和修正模式。

3.3 事故中、后期应根据已获得的大量监测资料或采用经过修正的模式进行公众受照剂量估算。事故不同阶段各照射途径需要模式计算或监测的重要量参见附录 B。

4 事故早期剂量估算

4.1 重要照射途径

事故早期的重要照射途径有烟羽外照射(γ和β外照射)、吸入烟羽内照射、皮肤和衣服上核素沉积 的β外照射、核素地面沉积γ外照射和吸入再悬浮核素的内照射。

4.2 烟羽外照射剂量

4.2.1 γ 外照射剂量

γ 外照射剂量估算公式包括:

a) 基于地面上方1 m 处 γ 周围剂量当量 H_{pγ} 的估算,见式(1)。

式中:

 $H_{p\gamma}$ ——在烟羽通过期间 τ 内烟羽所致的 γ 外照射剂量当量,单位为希沃特(Sv);

- $H_{\mu\gamma}(t)$ —*t* 时刻烟羽产生的在地面上方 1 m 处的 γ 外照射周围剂量当量率,单位为希沃特 每秒(Sv • s⁻¹);
- SF_{pr} 建筑物对烟羽外照射的屏蔽因子,对个人 SF_{pr} 取作 1,对群体 SF_{pr} 取作 0.7。 b) 基于近地面空气中核素的时间积分浓度 Ψ 的估算,见式(2)。

式中:

- H_{yy} ——在烟羽通过期间 τ 内烟羽中核素所致的 γ 外照射剂量当量,单位为希沃特(Sv);
- Ψ ——近地面空气中核素的时间积分浓度,单位为贝可秒每立方米(Bq•s•m⁻³);
- DCF_{py} ——剂量转换系数,即核素单位时间积分浓度所致 γ 外照射剂量,单位为 Sv (Bq s m⁻³)⁻¹, DCF_{py} 的数值参见附录 C;
- SF_{py} ——建筑物对烟羽外照射的屏蔽因子,对个人 SF_{py}取作 1,对群体 SF_{py}取作 0.7。

4.2.2 皮肤**β**照射剂量

皮肤β照射剂量估算公式包括:

a) 来自烟羽中放射性惰性气体所致皮肤当量剂量 H₃₈的估算,见式(3)。

式中:

$$H_{i\beta}$$
 ——空气中放射性惰性气体所致皮肤 β 照射当量剂量,单位为希沃特(Sv);

 Ψ ——近地面空气中核素的时间积分浓度,单位为贝可秒每立方米(Bq•s•m⁻³);

 $DCF_{i\beta}$ ——剂量转换系数,即惰性气体单位时间积分浓度所致的皮肤 β 照射当量剂量,单位为

Sv • $(Bq \cdot s \cdot m^{-3})^{-1}$,相关的几种放射性惰性气体的 $DCF_{i\beta}$ 数值参见附录 D;

- SF_β ——衣服和人体对 β 辐射的屏蔽因子,该屏蔽因子与个人的习惯、衣着、姿势、季节和时间等因素有关,其时间平均的代表值可取 0.5,对于保守估计可取作 1。
- b) 基于近地面空气中放射性核素的时间积分浓度 ¥ 的估算,见式(4)。

 $H_{a\beta}$ ——空气中放射性核素所致皮肤 β 照射当量剂量,单位为希沃特(Sv);

- Ψ ——近地面空气中核素的时间积分浓度,单位为贝可秒每立方米(Bq•s•m⁻³);
- $DCF_{a\beta}$ ——剂量转换系数,即核素单位时间积分浓度所致的皮肤 β 照射皮肤当量剂量,单位为 Sv•(Bq•s•m⁻³)⁻¹,不同核素的剂量转换系数 $DCF_{a\beta}$ 数值参见附录 E;
- *SF*^β 衣服和人体对 β 辐射的屏蔽因子,该屏蔽因子与个人的习惯、衣着、姿势、季节和时间等因素有关,其时间平均的代表值可取 0.5,对于保守估计可取作 1。
- c) 基于皮肤和衣服上核素沉积表面比活度 C_s的估算,见式(5)。

式中:

$$H_{s^{\beta}}$$
 ——沉积在皮肤和衣服上核素所致 β 照射当量剂量,单位为希沃特(Sv);

- C_s 一一皮肤和衣服上沉积核素表面比活度,单位为贝可每平方米($Bq \cdot m^{-2}$);
- DCF_{s} ——剂量转换系数,即皮肤表面沉积核素单位比活度所致皮肤 β 照射当量剂量,单位为 Sv•(Bq•m⁻²)⁻¹,不同核素的 DCF_{s} 数值参见附录 E;
- *SF*_β 衣服和人体对β辐射的屏蔽因子,该屏蔽因子与个人的习惯、衣着、姿势、季节和时间等因素有关,其时间平均的代表值可取 0.5,对于保守估计可取作1。

4.3 吸入烟羽内照射剂量

吸入烟羽内照射剂量 H_b的估算,见式(6)。

式中:

- H_b ——吸入烟羽内照射待积有效剂量或甲状腺待积当量剂量,单位为希沃特(Sv);
- B ──人的呼吸率,单位为立方米每秒(m³・s⁻¹),不同年龄组成员的呼吸率 B 参见附录 F 的表 F.1;
- DCF_b——吸入剂量转换系数,即吸入单位活度核素所致的待积有效剂量或甲状腺待积当量剂量, 单位为希沃特每贝可(Sv•Bq⁻¹),不同核素的吸入剂量转换系数 DCF_b参见附录 F 的 表 F.2 和表 F.3。
- 4.4 地面沉积核素 γ 外照射剂量 Hgr 的估算

4.4.1 基于地面沉积核素表面比活度 Cg的估算

基于地面沉积核素表面比活度 C_a的估算,见式(7)。

式中:

- H_g, ——地面沉积核素所致外照射剂量当量,单位为希沃特(Sv);
- C_{g} ——地面沉积核素表面比活度,单位为贝可每平方米($Bq \cdot m^{-2}$),建议采用峰值或归一化值;
- DCF_g ——剂量转换系数,单位为 Sv (Bq m⁻²)⁻¹; DCF_g是假定受照射者在室外给定时间 τ内 停留时地面沉积核素单位表面比活度所致积分全身剂量,对事故早期 τ —般取第1周, DCF_g参见附录G 的表 G.1;
- SF, ——考虑了人员在室内居留份额的时间平均建筑物屏蔽因子, SF, 参见附录 G 的表 G.2。

4.4.2 基于地面上方 1 m 处 γ 外照射剂量当量率 H_{γ} 的估算

基于地面上方 1 m 处 γ 外照射剂量当量率 H_{γ} 的估算,见式(8)。

- H_{gy} ——地面沉积核素所致外照射剂量当量,单位为希沃特(Sv);
- H_{γ} ——地面沉积核素产生的在地面上方 1 m 处的 γ 照射剂量当量率,单位为希沃特每秒(Sv · s⁻¹);
- SF_γ ——考虑了人员在室内居留份额的时间平均建筑物屏蔽因子,SF_γ参见附录 G 中的 G.2;
- λ ——核素的有效衰变常数,单位为每秒(s⁻¹)。λ = λ_R + λ_w,其中 λ_R 为核素的物理衰变常数, λ_w为地面沉积清除速率常数,与核素再悬浮、降水冲洗、核素向下转移有关。对碘核素 λ_w取 0.1 a⁻¹,对其他核素 λ_w取 0.01 a⁻¹;
- τ ——积分时间,单位为秒(s),一般取 6.048×10⁵ s(一周)。

4.5 吸入再悬浮核素内照射剂量

吸入再悬浮核素内照射剂量 H₁的估算,见式(9)。

式中:

- H₁ ——吸入再悬浮核素所致的待积有效剂量或待积剂量当量,单位为希沃特(Sv);
- Ψ ——近地面空气中核素的时间积分浓度,单位为贝可秒每立方米(Bq•s•m⁻³);
- B ——人的呼吸率,单位为立方米每秒($m^3 \cdot s^{-1}$);
- DCF_b——吸入剂量转换系数,即吸入单位活度再悬浮核素所致的待积有效剂量或待积剂量当量, 单位为希沃特每贝可(Sv•Bq⁻¹);DCF_b的数值参见附录 F 的表 F.2 和表 F.3;
- *K*(*t*) ——时间依赖的再悬浮因子,*K*(*t*)的定义为空气中再悬浮核素浓度与该核素地面沉积表面活度 之比,单位为每米(m⁻¹),再悬浮因子*K*(*t*)的影响因素和时间的依赖关系参见附录 F 的 F.4;
- $\lambda_{\rm R}$ ——核素的物理衰变常数,单位为每秒(s⁻¹);
- τ ——积分时间,单位为秒(s),一般取 6.048×10⁵ s(一周)。

4.6 公众成员平均受照有效剂量的估算

在公众成员同时受到核事故释放的多种核素通过多种途径照射的情况下,由各核素和各照射途径 对公众成员平均所致有效剂量按式(10)计算。

式中:

E ——公众成员平均所受有效剂量,单位为希沃特(Sv);

W_T ——器官或组织 T 的组织权重因数,不同组织或器官的 W_T参见附录 H;

H_{ip}——各器官或组织 T 所受 i 核素 p 照射途径所致当量剂量或待积当量剂量,单位为希沃特(Sv);

i ——所涉及的第i 种核素;

p ——所涉及的第*p* 种照射途径。

4.7 集体剂量的估算

如果核事故涉及放射性物质向大气和水体释放,则集体剂量的表示如式(11)所示。

式中:

- S ——给定半径范围内的集体有效剂量,单位为人希沃特(人·Sv);
- S(A)——经大气途径产生的给定半径范围内的集体有效剂量,单位为人希沃特(人•Sv);
- S(W)——经水途径产生的给定半径范围内的集体有效剂量,单位为人希沃特(人•Sv)。
- 经大气途径产生的集体有效剂量按式(12)计算。
- 4

S(A)——经大气途径产生的给定半径范围内的集体有效剂量,单位为人希沃特(人•Sv);

P_d ——d子区的公众的人口数,单位为人;

 E_{ad} ——d 子区 a 年龄组平均个人有效剂量,单位为希沃特(Sv);

f_{ad} ——d子区内 a 年龄组成员在该子区人口中的比例。

经水体途径产生的集体有效剂量按式(13)计算。

式中:

S(W)——经水途径产生的给定半径范围内的集体有效剂量,单位为人希沃特(人•Sv);

- P_{d} ——d子区的公众的人口数,单位为人;
- E_{ad} 一一d 子区 a 年龄组平均个人有效剂量,单位为希沃特(Sv);
- f_{ad} ——d子区内 a 年龄组成员在该子区人口中的比例。

5 事故中期剂量估算

5.1 重要照射途径

事故中期的重要照射途径是地面沉积核素的外照射、吸入再悬浮核素的内照射和食入被污染食物与饮用水的内照射。事故中期剂量估算可更多的立足于监测数据评价、适当结合模式评价。

5.2 外照射剂量

5.2.1 基于地面沉积核素表面比活度 Cg的估算

基于地面沉积核素表面比活度 C_a的估算,见式(14)。

式中:

Hgy ——地面沉积核素所致第1年积分有效剂量,单位为希沃特(Sv);

 C_{g} ——地面沉积核素表面比活度,单位为贝可每平方米(Bq•m⁻²);

 DCF_g ——剂量转换系数,单位为 Sv • (Bq • m⁻²)⁻¹, DCF_g的计算见式(15)。

式中:

 $H_{\gamma}(t)$ — 单位表面比活度所致 γ 剂量当量率,单位为 Sv • s⁻¹ • (Bq • m⁻²)⁻¹, $H_{\gamma}(t)$ 的值参见 附录 G 的表 G.1 的 A 列;

SF₇ ——考虑了人员在室内居留份额的时间平均建筑物屏蔽因子。

由式(14)可知剂量转换系数即地面沉积核素单位表面比活度在事故发生之后第1年对全身所致 γ 剂量的积分值,对事故中期的剂量估算,t 取1年,在室外滞留情况下的 t=1a 的 DCF_g参见附录G 的表G.1 的 D 栏。

5.2.2 基于被污染地面上方 1 m 处 γ 剂量当量率 H_{γ} 的估算

基于被污染地面上方 1 m 处 γ 剂量当量率 H_{γ} 的估算,见式(16)。

式中:

Hgy ——地面沉积核素所致外照射剂量当量,单位为希沃特(Sv);

- H_{γ} ——地面沉积核素产生的在地面上方 1 m 处的 γ 剂量当量率,单位为希沃特每秒(Sv · s⁻¹); SF_γ ——考虑了人员在室内居留份额的时间平均建筑物屏蔽因子;
- θ ——地面沉积核素在峰值时刻(t=0)起的单位剂量率所致的第1年积分剂量当量与地面沉积 核素产生的在地面上方1m处峰值时刻(t=0)的γ剂量当量率 $H_{\gamma}(0)$ 的比值,单位为秒 (s),θ的计算见式(17)。

- $H_{\gamma}(t)$ 地面沉积核素产生的在地面上方 1 m 处某一 t 时刻的 γ 剂量当量率,单位为希沃特每 秒(Sv • s⁻¹);
- $H_{\gamma}(0)$ 地面沉积核素产生的在地面上方 1 m 处峰值时刻(t=0)的 γ 剂量当量率,单位为希沃 特每秒(Sv s⁻¹)。

附录 G 表 G.1 中 E 列的数值相当于 θ 值,即峰值时刻单位剂量率所致的第1年积分剂量当量。表中数据未考虑人员在建筑物内居留时间和建筑物屏蔽修正,第1年积分剂量数据是以开阔地上方1 m 处的初始 γ 剂量率为单位表示的。

5.3 吸入再悬浮核素的内照射剂量

计算方法同 4.5,但积分时间为第1年。

5.4 食入被污染食物和饮水的内照射剂量

5.4.1 食入未经加工处理的被污染的食物所致剂量

食入未经加工处理的被污染的食物所致剂量见式(18)。

式中:

- H_{fz}——食人被污染食物 z 所致的待积有效剂量或器官待积当量剂量,单位为希沃特(Sv);
- C_{fz} ——食物 z 中放射性核素的峰值比活度或归一化时刻的比活度,单位为贝可每千克(Bq•kg⁻¹);
- I_{fz} ——食物 z 的年食入量,单位为千克每年(kg•a⁻¹);不同年龄男、女食物消费量参考值参见附录 I 的表 I.1;
- H2 食入单位活度核素的待积有效剂量或器官待积当量剂量,单位为希沃特每贝可(Sv•
 Bq⁻¹);食入单位活度核素所致的待积有效剂量、甲状腺待积当量剂量分别参见附录 I 的表 I.2 和表 I.3;
- G_z 食物 z 中核素比活度的 1 年积分值与某一指定时刻该食物中核素比活度的比值,单位为 Bq•a•kg⁻¹/(Bq•kg⁻¹),未加工"新鲜"食物的G_z值参见附录J的表J.1。对于"储藏"食物即在事故后生产、收获或储存并在其后一年中被均匀消费的食物的G_z值参见附录K的 表K.1,G_z按式(19)计算。

$$G_{z} = \frac{\int_{0}^{1_{a}} C_{fz}(t) dt}{C_{fz}(t_{p})}$$
 (19)

式中:

- $C_{fz}(t)$ ——食物 z 中某一 t 时刻该食物中核素比活度,单位为贝可每千克(Bq·kg⁻¹);
- $C_{fz}(t_p)$ ——食物 z 中某一指定的 t_p 时刻该食物中核素比活度,单位为贝可每千克(Bq•kg⁻¹);
- t_p ——某一指定时刻,可以是食物 z 中放射性污染峰值出现的时间或测量时刻或指定的归一 化时刻; $C_{f_z}(t_p)$ 是 t_p 时刻食物 z 中的核素比活度,单位为贝可每千克(Bq•kg⁻¹); G_z 表

达式中的积分下限从 t_a计算起。

5.4.2 食入经过加工处理的被污染食物所致剂量

食入经过加工处理的被污染食物所致剂量,见式(20)。

式中:

- H'症——食人经加工处理的食物 z 所致的待积有效剂量或器官待积当量剂量,单位为希沃特(Sv);
- H_{fz} ——食人被污染食物 z 所致的待积有效剂量或器官待积当量剂量,单位为希沃特(Sv);
- *f* 未经加工食物中放射性核素比活度与经过清洗、加工处理后比活度的比值。*f* 因子的数 值参见附录 J 的 J.2。

5.4.3 饮用被污染的饮用水所致的待积有效剂量或待积当量剂量

饮用被污染的饮用水所致的待积有效剂量或待积当量剂量,见式(21)。

式中:

- Hw——食人被污染的饮用水所致的待积有效剂量或待积当量剂量,单位为希沃特(Sv);
- C_w —— 饮用水中放射性核素在 t_p 时即峰值时刻或归一化时刻的比活度,单位为贝可每升(Bq · L⁻¹);
- I_w ——被污染饮用水的年食入量,单位为升每年(L· a^{-1}),其食入量参考值参见附录 I 的表 I.1;
- H_2 食入单位活度核素所致的待积有效剂量或器官待积当量剂量,单位为希沃特每贝可(Sv · Bq⁻¹),数据参见附录 I 的表 I.2 和表 I.3;
- $\lambda_{\rm R}$ ——核素的物理衰变常数,单位为每年(a^{-1});
- T ——食入被污染饮用水的持续时间,单位为年(a)。

5.5 人群平均受照总剂量的估算

估算方法同 4.6。

5.6 集体剂量的估算

估算方法同 4.7。

6 事故后期剂量预测原则

6.1 人群平均剂量预测

事故后期的重要照射途径是地面沉积核素的外照射、吸入再悬浮核素的内照射和食入被污染食物 与饮用水的内照射。事故后期剂量估算可更多的立足于监测数据评价、适当结合模式评价。

6.2 集体剂量预测

预测核电厂或其他核设施周围广大地区公众所受的集体剂量,以作为评估核事故受照人群辐射随 机性效应的剂量依据。

6.3 剂量估算

参照早、中期的剂量估算模式和参数。

附录A

(资料性附录)

核事故时释放的对公众成员所受剂量估算有重要意义的放射性核素

核事故时释放的对公众成员所受剂量估算有重要意义的放射性核素见表 A.1。不同类型核事故、 不同阶段应考虑的放射性核素见表 A.2。

表 A.1 核事故时释放的对公众成员所受剂量估算有重要意义的放射性核素

故妻		每秒衰变常数	每年衰变常数
权杀	十农州	s^{-1}	a^{-1}
³ H	12.32 a	1.78×10^{-9}	5.63×10^{-2}
$^{41}\mathrm{Ar}$	109.61 min	1.05×10^{-4}	3.33×10^{3}
⁸⁵ Kr	10.756 a	2.04×10^{-9}	6.44×10^{-2}
^{85m} Kr	4.480 h	4.30×10^{-5}	1.36×10^{3}
⁸⁷ Kr	76.3 min	1.51×10^{-4}	4.78×10^{3}
⁸⁸ Kr	2.84 h	6.78×10^{-5}	2.14×10^{3}
⁸⁹ Sr	50.53 d	1.59×10^{-7}	$5.01 \times 10^{\circ}$
⁹⁰ Sr	28.79 a	$7.63 imes 10^{-10}$	2.41×10^{-2}
⁹⁵ Zr	64.032 d	1.25×10^{-7}	$3.95 \times 10^{\circ}$
⁹⁵ Nb	34.991 d	2.29×10^{-7}	$7.24 \times 10^{\circ}$
¹⁰³ Ru	39.26 d	2.04×10^{-7}	$6.45 \times 10^{\circ}$
¹⁰⁶ Ru	373.59 d	2.15×10^{-8}	6.78×10^{-1}
¹³² Te	3.204 d	2.50×10^{-6}	$7.90 imes 10^{1}$
¹³¹ I	8.020 70 d	1.00×10^{-6}	3.16×10^{1}
132 I	2.295 h	8.39×10^{-5}	2.65×10^{3}
¹³³ I	20.8 h	$9.26 imes 10^{-6}$	2.92×10^{2}
134 I	52.5 min	2.20×10^{-4}	6.94×10^{3}
135 I	6.57 h	2.93×10^{-5}	9.25×10^{2}
$^{133}{ m Xe}$	5.243 d	1.53×10^{-6}	4.83×10^{1}
$^{135}{ m Xe}$	9.14 h	2.11×10^{-5}	6.65×10^{2}
$^{134}{ m Cs}$	2.064 8 a	1.06×10^{-8}	$3.36 imes 10^{-1}$
¹³⁷ Cs	30.167 1 a	$7.28 imes 10^{-10}$	2.30×10^{-2}
$^{140}\mathrm{Ba}$	12.752 d	6.29×10^{-7}	1.99×10^{1}
¹⁴⁰ La	1.678 1 d	4.78×10^{-6}	1.51×10^{2}
¹⁴⁴ Ce	284.91 d	2.82×10^{-8}	8.89×10^{-1}
²³⁹ Np	2.356 5 d	$3.40 imes 10^{-6}$	1.07×10^{2}
²³⁸ Pu	87.7 a	2.50×10^{-10}	$7.90 imes 10^{-3}$
²³⁹ Pu	2.411×10^4 a	9.11×10^{-13}	$2.87 imes 10^{-5}$
²⁴⁰ Pu	6 564 a	3.35×10^{-12}	$1.06 imes 10^{-4}$
$^{241}\mathrm{Pu}$	14.35 a	1.53×10^{-9}	4.83×10^{-2}
$^{241}\mathrm{Am}$	432.2 a	$5.08 imes 10^{-11}$	1.60×10^{-3}
²⁴² Cm	162.8 d	4.93×10^{-8}	$1.56 \times 10^{\circ}$
$^{244}\mathrm{Cm}$	18.10 a	1.21×10^{-9}	3.83×10^{-2}

表 A.2	不同类型核事故、不同阶段应考虑的放射性核素

故事故类则	重要的放射性核素							
核 爭 似 尖 型	第一天 ^ª	第一周b	长期					
反 应 堆 堆 芯 熔 化 事 故 (安 全 示 失 效)	Y-90, Sr-91, Y-93, Nb-96, Zr- 90, Mo-99, Rh-105, Pd-109, Ag- 111, Pd-112, Cd-115, Sn-121, Sn- 125, Sb-126, I-131, I-132, Te- 131m, Te-132, I-133, I-135, La- 140, Pr-142, Ce-143, Pr-143, Ba- 146, Nd-147, Pm-149, Pm-151, Eu-152m, Sm-153, Sm-156, Eu- 157, Np-239	Rh-86, Sr-89, Y-90, Y-91, Nb- 95, Zr-95, Nb-96, Mo-99, Tb- 160, Ru-103, Rh-105, Ag-111, Pd-112, Cd-115, Cd-115m, Sn- 121, Sb-124, Sn-125, Sb-127, I- 131, Te-131m, Te-132, I-133, Cs- 136, Ba-140, La-140, Ce-141, Ce- 143, Pr-143, Nd-147, Pm-149, Pm-151, Sm-153, Np-239	H-3、Sr-89、Sr-90、Y-91、Nb- 93m、Nb-95、Ru-103、Ru-106、 Ag-110m、Cd-113m、Cd-115m、 Sn-121m、Sn-123、Sb-124、Sb- 125、I-129、Cs-134、Cs-137、Ce- 141、Ce-144、Pm-147、Tb-160、 Pu-238、Pu-239、Pu-240、Am- 241、Pu-241、Cm-242、Pu-242、 Am-243、Cm-244					
堆 芯 熔 化 事故(外壳 能 密 封 粒 子)	H-3, Rb-88, Sr-89, Sr-90, Y-90, Sr-91, Y-91, Ru-103, Ru-105, Ru-106, I-121, I-123, I-132, I- 134, I-135, Cs-136, Cs-138, Cs- 139, Ba-139, Ba-140, La-140	H-3、Sr-89、Sr-90、Ru-103、Ru- 105、Ru-106、I-131、I-133、Ba- 140、La-140	H-3, Sr-89, Sr-90, Tc-99, Ru-103, Ru-106, I-129, I-131, Cs-137					
核燃料后处 理厂意外释 放事故	Sr-90,Nb-95,Zr-95,Tc-99,Ru-103,Ru-106,I-129,I-131,Cs-134,Cs-137,Ce-141,Ce-144,Pu-238,Pu- 239,Pu-240,Am-241,Pu-241,Cm-242,Pu-242,Am-243,Cm-244							
钚 燃 料 制 造 厂 意 外 释放事故	 「然料制 造厂意外 Pu-238、Pu-239、Pu-240、Am-241、Pu-241、Pu-242 释放事故 							
注 :表中	注:表中数据取自 IAEA-TECDOC-1092(1999)。							
^a 放射 ^b 放射	^a 放射性核素的半衰期在 6 h 以上。 ^b 放射性核素的半衰期约 1 d 或 1 d 以上。							

附录B

(资料性附录)

事故后不同阶段需要模式计算或监测的重要量

事故后不同阶段各照射途径需要监测或模式计算的重要量见表 B.1。

表 B.1	事故后不同阶段各照射途径需要监测或模式计算的重要

東北陸の	满方的重要照针冷汉	重要量				
爭叹例权	简任的里安照别逐任	名称	符号	单位		
	烟羽 γ 外照射	烟羽产生的在地面上方1m处γ周围 剂量当量	• Н _р у	$Sv \cdot s^{-1}$		
		近地面空气中核素的时间积分浓度	Ψ	Bq • s • m^{-3}		
	烟羽β外照射	近地面空气中核素的时间积分浓度	Ψ	Bq • s • m^{-3}		
	林 主沉和 核麦	近地面空气中核素的时间积分浓度	Ψ	Bq • s • m^{-3}		
早期	冲 农机饮核系 P / 用别	烟羽在皮肤上沉积的表面比活度	C_{s}	$Bq \cdot m^{-2}$		
	烟羽吸入内照射	近地面空气中核素的时间积分浓度	Ψ	Bq • s • m^{-3}		
		地面沉积核素的表面比活度	$C_{\rm g}$	$Bq \cdot m^{-2}$		
	地面沉积核素 7 外照射	地面沉积核素产生的在地面上方1m 处的γ外照射剂量当量率	Ηγ	$Sv \cdot s^{-1}$		
	吸入再悬浮核素内照射	地面沉积核素的表面比活度	$C_{\rm g}$	$Bq \cdot m^{-2}$		
		地面沉积核素的表面比活度	$C_{\rm g}$	$Bq \cdot m^{-2}$		
	地面沉积核素 γ 外照射	地面沉积核素产生的在地面上方 1 m 处的 γ 外照射剂量当量率	• Ηγ	$Sv \cdot s^{-1}$		
	吸入再悬浮核素内照射	地面沉积核素的表面比活度	C_{g}	$Bq \cdot m^{-2}$		
中期		食物中放射性核素的峰值比活度或 归一化时刻的比活度	$C_{ m fz}$	$Bq \cdot kg^{-1}$		
	食入污染食物 或饮水内照射	饮水中放射性核素的峰值比活度或 归一化时刻的比活度	C_{W}	$Bq \cdot L^{-1}$		
		牧草中放射性核素的峰值比活度或 归一化时刻的比活度	C_{pas}	$Bq \cdot kg^{-1}$		
后期	参照中期					

附录C

(资料性附录)

烟羽照射途径 γ 外照射剂量学参数

空气中放射性核素单位时间积分浓度经空气浸没途径所致全身γ外照射剂量转换系数见表 C.1。

表 C.1 空气中放射性核素单位时间积分浓度经空气浸没途径所致全身 γ 外照射剂量转换系数

	DCF_{PY}		
松系	$Sv \cdot (Bq \cdot s \cdot m^{-3})^{-1}$		
⁴¹ Ar	$7.6 imes 10^{-14}$		
⁶⁰ Co	$1.5 imes 10^{-13}$		
⁸⁵ Kr	1.4×10^{-16}		
^{83m} Kr	$6.2 imes 10^{-15}$		
^{85m} Kr	$7.0 imes 10^{-15}$		
⁸⁷ Kr	$3.8 imes 10^{-14}$		
⁸⁸ Kr	$1.3 imes 10^{-14}$		
⁸⁹ Sr	$6.1 imes 10^{-18}$		
⁹⁰ Sr	2.1×10^{-17}		
¹⁰³ Ru	2.1×10^{-14}		
¹⁰⁶ Ru	$9.0 imes 10^{-15}$		
¹³¹ I	$1.6 imes 10^{-14}$		
¹³² I	1.0×10^{-13}		
¹³³ I	$2.6 imes 10^{-14}$		
¹³⁴ I	$1.2 imes 10^{-13}$		
¹³⁵ I	$7.2 imes 10^{-14}$		
^{131m} Xe	$3.7 imes 10^{-16}$		
^{133m} Xe	$1.3 imes 10^{-15}$		
$^{133}\mathrm{Xe}$	$1.5 imes 10^{-15}$		
135 Xe	1.1×10^{-14}		
¹³⁷ Cs	$2.6 imes 10^{-14}$		
²³⁹ Np	$8.3 imes 10^{-15}$		
注 1. 表中数据取自 IAEA Safety Series	No 81 号出版物(1986)		

1 剱 掂 取 目 日版物

注 2:表中空气浸没 γ 外照射剂量系数数据取自美国核管会 NUREG/CR-3160 号报告(1983)。

附录D

(资料性附录)

烟羽中放射性惰性气体对皮肤β 照射的剂量学参数

空气中放射性惰性气体单位时间积分浓度所致β皮肤剂量转换系数见表 D.1。

表 D.1 空气中放射性惰性气体单位时间积分浓度所致 β 皮肤剂量转换系数

放射性惰性气体	$DCF_{i\beta}$ Sv • (Bq • s • m ⁻³) ⁻¹			
⁸⁵ Kr	$3.4 imes 10^{-15}$			
^{85m} Kr	$3.9 imes 10^{-15}$			
⁸⁷ Kr	$6.7 imes 10^{-14}$			
⁸⁸ Kr	$1.2 imes 10^{-14}$			
¹³³ Xe	$8.3 imes 10^{-16}$			
¹³⁵ Xe	$5.3 imes 10^{-15}$			
注:表中数据取自 IAEA Safety Series No.81 号出版物(1986)。				

附 录 E

(资料性附录)

空气中或皮肤表面沉积核素所致皮肤剂量转换系数

空气中核素单位时间积分浓度或皮肤表面沉积核素单位比活度所致皮肤剂量转换系数见表 E.1。

表 E.1 空气中核素单位时间积分浓度或皮肤表面沉积核素单位比活度所致皮肤剂量转换系数

核素	$DCF_{s\beta}$ Sv • (Bq • s • m ⁻³) ⁻¹	$DCF_{s\beta}$ Sv • (Bq • m ⁻²) ⁻¹			
⁸⁹ Sr	1.4×10^{-11}	4.6×10^{-9}			
⁹⁰ Sr	1.4×10^{-11}	4.6×10^{-9}			
⁹⁵ Zr	1.1×10^{-11}	3.6×10^{-9}			
⁹⁵ Nb	$3.0 imes 10^{-12}$	1.0×10^{-9}			
103 Ru	9.0×10 ⁻¹²	$3.0 imes 10^{-9}$			
$^{106}\mathrm{Ru}$	1.4×10^{-11}	4.8×10^{-9}			
¹³² Te	1.5×10^{-11}	$5.0 imes 10^{-9}$			
¹³¹ I	4.1×10 ⁻¹¹	4.1×10^{-9}			
¹³² I	1.2×10^{-11}	1.2×10^{-9}			
¹³³ I	3.8×10 ⁻¹¹	3.8×10^{-9}			
135 I	2.5×10^{-11}	2.5×10^{-9}			
¹³⁴ Cs	$9.0 imes 10^{-12}$	$3.0 imes 10^{-9}$			
¹³⁷ Cs	1.8×10^{-11}	6.1×10^{-9}			
¹⁴⁰ Ba	1.4×10^{-11}	4.7×10^{-9}			
¹⁴⁰ La	1.3×10^{-11}	4.2×10^{-9}			
¹⁴⁴ Ce	2.2×10^{-11}	7.2×10^{-9}			
²³⁹ Np	9.6×10^{-12}	3.2×10^{-9}			
²⁴¹ Pu	$6.6 imes 10^{-18}$	2.2×10^{-15}			
注 1 :表中数据表述取自 IAEA Safety Series No.81 号出版物(1986)。 注 2:表中所列剂量参数 DCF ₃ 是核素沉积后 12 h内皮肤表层所受剂量的剂量转换系数。					

附 录 F

(资料性附录)

吸入放射性核素剂量学参数

F.1 呼吸率 B

不同年龄组成员的呼吸率典型值见表 F.1。

表 F.1 不同年龄组成员的呼吸率典型值

汪斗舟太		幼儿			少儿			成人(男))		成人(女))
伯幼仏恋	h	$m^3 \cdot h^{-1}$	$m^3 \cdot d^{-1}$	h	$m^3 \cdot h^{-1}$	$m^3 \cdot d^{-1}$	h	$m^3 \cdot h^{-1}$	$m^3 \cdot d^{-1}$	h	$m^3 \cdot h^{-1}$	$m^3 \cdot d^{-1}$
睡眠	14	0.15	2.1	10	0.31	3.1	8	0.45	3.6	8.5	0.32	2.7
休息	3.3	0.22	0.73	4.7	0.38	1.8	6	0.54	3.2	5.4	0.39	2.1
轻体力活动	6.7	0.35	2.3	9.3	1.1	10.3	9.8	1.5	14.7	9.9	1.3	12.9
重体力活动		_			_		0.25	3	0.75	0.19	2.7	0.52
总计(m ³ ・d ⁻¹)		5.1			15.2			22.2			18.2	
注 1:表中的呼	注 1: 表中的呼吸率数据取自 ICRP 第 89 号出版物(2002)。幼儿、少儿和成人组的年龄范围分别为 0 岁~6 岁、											
7岁~17岁和18岁及以上,其数据分别相应于该出版物中1岁、10岁和成人的数据。												
注 2: 表中"h"是人员每天处于各活动状态的小时数,"m ³ · h ⁻¹ "和"m ³ · d ⁻¹ "分别是相应每小时或每天的呼吸率。												
注 3: 幼儿组、	注 3: 幼儿组、少儿组不分男女,成人组按性别分男女。											

F.2 待积有效剂量的剂量转换系数

吸入单位活度核素所致的待积有效剂量转换系数见表 F.2。

表 F2	吸 λ 单位活度核麦斫致的结积有效剂量转换系数 DCF.	单位为委汪特每日可
7XΓ.Ζ	吸入半位应该系列或的付付有效剂重转换系数DCF。	

於 志	吸收速度	剂量转换系数 DCF _b					
核系	类别	幼儿	少儿	成人			
	F	7.3×10^{-9}	2.3×10^{-9}	1.0×10^{-9}			
⁸⁹ Sr	М	2.4×10^{-8}	9.1×10 ⁻⁹	6.1×10^{-9}			
	S	$3.0 imes 10^{-8}$	1.2×10^{-8}	7.9×10^{-9}			
	F	5.2×10^{-8}	4.1×10^{-8}	2.4×10^{-8}			
⁹⁰ Sr	М	1.1×10^{-7}	5.1×10^{-8}	3.6×10^{-8}			
	S	$4.0 imes 10^{-7}$	1.8×10^{-7}	1.6×10^{-7}			
	F	1.1×10^{-8}	4.2×10^{-9}	2.5×10^{-9}			
$^{95} m Zr$	М	1.6×10^{-8}	6.8×10^{-9}	4.8×10^{-9}			
	S	1.9×10^{-8}	8.3×10 ⁻⁹	5.9×10^{-9}			
	F	$3.0 imes 10^{-9}$	9.3×10^{-10}	4.8×10^{-10}			
$^{103}\mathrm{Ru}$	М	$8.4 imes 10^{-9}$	3.5×10^{-9}	2.4×10^{-9}			
	S	1.0×10^{-8}	4.2×10^{-9}	3.0×10^{-9}			

表 F.2 (续)

单位为希沃特每贝可

₩ 美	吸收速度			
依系	类别	幼儿	少儿	成人
	F	5.4×10^{-8}	1.6×10^{-8}	7.9×10^{-9}
$^{106}\mathrm{Ru}$	М	1.1×10^{-7}	4.1×10^{-8}	2.8×10^{-8}
	S	2.3×10^{-7}	9.1×10 ⁻⁸	6.6×10^{-8}
	F	7.3×10^{-9}	5.3×10^{-9}	6.6×10^{-9}
$^{134}\mathrm{Cs}$	М	2.6×10^{-8}	1.2×10^{-8}	9.1×10^{-9}
	S	6.3×10 ⁻⁸	2.8×10^{-8}	2.0×10^{-8}
	F	5.4×10^{-9}	3.7×10^{-9}	4.6×10^{-9}
$^{137} m Cs$	М	2.9×10^{-8}	1.3×10^{-8}	9.7×10^{-9}
_	S	1.0×10^{-7}	4.8×10^{-8}	3.9×10^{-8}
	F	7.8×10^{-9}	2.4×10^{-9}	1.0×10^{-9}
$^{140}\mathrm{Ba}$	М	2.0×10^{-8}	7.6×10^{-9}	5.1×10^{-9}
	S	2.2×10^{-8}	8.6×10 ⁻⁹	5.8×10^{-9}
	F	2.7×10^{-7}	7.8×10^{-8}	4.0×10^{-8}
$^{144}\mathrm{Ce}$	М	1.6×10^{-7}	5.5×10^{-8}	$3.6 imes 10^{-8}$
	S	1.8×10^{-7}	7.3×10 ⁻⁸	5.3×10^{-8}
	F	1.4×10^{-9}	3.8×10^{-10}	1.7×10^{-10}
²³⁹ Np	М	4.2×10^{-9}	1.4×10^{-9}	9.3×10^{-10}
-	S	4.0×10^{-9}	1.6×10^{-9}	1.0×10^{-9}
	F	1.9×10^{-4}	1.1×10^{-4}	1.1×10^{-4}
238 Pu	М	7.4×10^{-5}	4.4×10^{-5}	4.6×10^{-5}
-	S	$4.0 imes 10^{-5}$	1.9×10^{-5}	1.6×10^{-5}
	F	2.0×10^{-4}	1.2×10^{-4}	1.2×10^{-4}
$^{239}\mathrm{Pu}$	М	7.7×10^{-5}	$4.8 imes 10^{-5}$	$5.0 imes 10^{-5}$
	S	3.9×10^{-5}	1.9×10^{-5}	$1.6 imes 10^{-5}$
	F	$2.0 imes 10^{-4}$	$1.2 imes 10^{-4}$	$1.2 imes 10^{-4}$
$^{240}\mathrm{Pu}$	М	7.7×10^{-5}	4.8×10^{-5}	5.0×10^{-5}
	S	$3.9 imes 10^{-5}$	1.9×10^{-5}	$1.6 imes 10^{-5}$
	F	$2.9 imes 10^{-6}$	$2.4 imes 10^{-6}$	2.3×10^{-6}
$^{241}\mathrm{Pu}$	М	9.7×10^{-7}	8.3×10^{-7}	9.0×10^{-7}
	S	2.3×10^{-7}	1.7×10^{-7}	1.7×10^{-7}
	F	1.8×10^{-4}	1.0×10^{-4}	$9.6 imes 10^{-5}$
$^{241}\mathrm{Am}$	М	$6.9 imes 10^{-5}$	$4.0 imes 10^{-5}$	4.2×10^{-5}
	S	$4.0 imes 10^{-5}$	1.9×10^{-5}	$1.6 imes 10^{-5}$
	F	2.1×10^{-5}	6.1×10 ⁻⁶	3.3×10^{-6}
$^{242}\mathrm{Cm}$	М	1.8×10^{-5}	7.3×10^{-6}	5.2×10^{-6}
	S	1.9×10^{-5}	8.2×10^{-6}	5.9×10^{-6}
	F	1.3×10^{-4}	6.1×10^{-5}	5.7×10^{-5}
²⁴⁴ Cm	М	5.7×10^{-5}	2.7×10^{-5}	2.7×10^{-5}
	S	3.8×10^{-5}	1.7×10^{-5}	1.3×10^{-5}

表 F.2 (续)

单位为希沃特每贝可

拉寿	吸收速度		剂量转换系数 DCF _b	
仪系	类别	幼儿	少儿	成人
注 1:核素	吸收速度类别描述放射性	核素从肺中的吸收速度。	根据物质自肺部吸收入血	液的速度,把物质分成 F
(快i	速)、M(中速)、S(慢速)三约	些。当核素吸收类别未知 时	付,按 M 类计算。计算中值	员定表中核素都处于氧化
物状	态。对于其他实际存在的	化学形态,剂量有所不同,	但差别很小。	
注 2: 表中	数值是假定气溶胶粒子的	活度中值空气动力学直径	(AMAD)为1μm 计算的	0
注 3.表中	核素的剂量转换系数取自	GB 18871—2002。幼儿、少	>儿和成人组的年龄范围分	分别为0岁~6岁、7岁~
17 岁	3和18岁及以上。幼儿、少	>儿和成人组的参数分别对	†应于 GB 18871−2002 中	1 岁~2 岁、7 岁~12 岁
和大	于17岁的数据。			

F.3 甲状腺待积当量剂量转换系数

吸入单位活度核素所致的甲状腺待积当量剂量转换系数见表 F.3。

表 F.3 吸入单位活度核素所致的甲状腺待积当量剂量转换系数 DCF,单位为希沃特每贝可

拉圭	吸收速度				
依系	类别	幼儿	少儿	成人	
	F	2.9×10^{-7}	6.1×10^{-8}	2.5×10^{-8}	
¹³² Te	М	5.3×10^{-8}	1.1×10^{-8}	4.3×10^{-9}	
	S	3.5×10^{-9}	$7.9 imes 10^{-10}$	$3.2 imes 10^{-10}$	
	F	$3.2 imes 10^{-6}$	$9.5 imes 10^{-7}$	3.9×10^{-7}	
131 I	М	2.1×10^{-7}	5.5×10^{-8}	2.2×10^{-8}	
	S	1.2×10^{-8}	3.0×10^{-9}	1.1×10^{-9}	
	F	3.8×10^{-8}	8.9×10 ⁻⁹	3.6×10^{-9}	
¹³² I	М	1.6×10^{-9}	3.4×10^{-10}	1.4×10^{-10}	
	S	8.0×10^{-11}	2.2×10^{-11}	1.1×10^{-11}	
	F	$8.0 imes 10^{-7}$	1.9×10^{-7}	$7.6 imes 10^{-8}$	
133 I	М	4.5×10^{-8}	9.3×10^{-9}	3.6×10^{-9}	
	S	2.5×10^{-9}	5.1×10^{-10}	1.8×10^{-10}	
	F	$1.6 imes 10^{-7}$	3.8×10^{-8}	1.5×10^{-8}	
135 I	М	8.0×10 ⁻⁹	1.7×10^{-9}	$6.5 imes 10^{-10}$	
	S	4.2×10^{-10}	9.3×10 ⁻¹¹	3.8×10^{-11}	
注 1: 核素吸收速度类别描述放射性核素从肺中的吸收速度。根据物质自肺部吸收入血液的速度,把物质分成 F (快速)、M(中速)、S(慢速)三类。当核素吸收类别未知时,按 M 类计算。计算中假定碘核素处于元素状态					

外,碲核素处于氧化物状态。对于其他实际存在的化学形态,剂量有所不同,但差别很小。

注 2:表中数值是假定气溶胶粒子的活度中值空气动力学直径(AMAD)为1μm计算的。

注 3:表中剂量转换系数取自 ICRP 第 71 号出版物(1995)。幼儿、少儿和成人组的年龄范围分别为 0 岁~6 岁、 7 岁~17 岁和 18 岁及以上。幼儿、少儿和成人组的参数分别对应于该出版物中 1 岁、10 岁和成人的数据。

F.4 时间依赖再悬浮因子

时间依赖再悬浮因子 K(t)的定义为空气中再悬浮核素活度浓度与地面沉积该核素表面比活度之 比,用于计算空气中核素活度浓度。再悬浮因子的数值随时间变化,受气候与环境很多因素(如温度、土 壤干燥度、风速、地表状态、植被、交通情况等)的影响,应通过实验确定。在温带地区,时间依赖的再悬 浮因子 K(t)的计算如式(F.1)所示。

$$K(t) = 10^{-6} e^{-at} + 10^{-9} e^{-bt}$$
 (F.1)

式中:

- K(t)——时间依赖的再悬浮因子,无量纲;
- t 一一沉积以后经过的时间,单位为天(d);
- a ——取 10⁻²,单位为每天(d⁻¹);
- *b* ——取 2×10⁻⁵,单位为每天(d⁻¹)。

附录G

(资料性附录)

地面沉积核素所致的 γ 外照射剂量学参数

G.1 剂量转换系数

单位地面沉积核素表面比活度所致的 γ 外照射剂量转换系数见表 G.1。

表 G.1	单位地面沉积核素表面比活度所致的 3	Y外照射剂量转换系数 DCF。
-------	--------------------	-----------------

	沉积时刻的 起始剂量率	第1周利	只分剂量	第1年利	识分剂量	50年待积剂量	
核素	А	В	С	D	Е	F	G
	$Sv \cdot s^{-1}$	Sv	Sv	Sv	Sv	Sv	Sv
	$\overline{\mathrm{Bq} \cdot \mathrm{m}^{-2}}$	$\overline{\mathrm{Bq} \cdot \mathrm{m}^{-2}}$	$\overline{\mathrm{Sv}} \cdot \mathrm{s}^{-1}$	$\overline{\mathrm{Bq} \cdot \mathrm{m}^{-2}}$	$\overline{\mathrm{Sv}} \cdot \mathrm{s}^{-1}$	$\overline{\mathrm{Bq} \cdot \mathrm{m}^{-2}}$	$\overline{\mathrm{Sv}} \cdot \mathrm{s}^{-1}$
⁹⁵ Zr	$6.0 imes 10^{-16}$	3.7×10^{-10}	6.2×10^{5}	9.10×10^{-9}	1.5×10^{7}	9.4×10^{-9}	1.6×10^{7}
⁹⁵ Nb	$6.2 imes 10^{-16}$	3.5×10^{-10}	5.6×10^{5}	2.7×10^{-9}	4.3×10^{6}	2.7×10^{-9}	4.3×10^{6}
¹⁰³ Ru	4.1×10^{-16}	2.3×10^{-10}	5.7×10^{5}	2.0×10^{-9}	4.8×10^{6}	2.0×10^{-9}	4.8×10^{6}
$^{106}\mathrm{Ru}$	1.7×10^{-16}	1.0×10^{-10}	$6.0 imes 10^{5}$	3.7×10^{-9}	2.2×10^{7}	6.8×10^{-9}	3.9×10^{7}
¹³² Te	2.4×10^{-16}	6.4×10^{-10}	$2.7 imes 10^{6}$	8.4×10^{-10}	3.5×10^{6}	8.4×10^{-10}	$3.5 imes 10^{6}$
¹³¹ I	$3.6 imes 10^{-16}$	1.6×10^{-10}	4.5×10^{5}	3.6×10^{-10}	1.0×10^{6}	3.6×10^{-10}	1.0×10^{6}
¹³² I	1.8×10^{-15}	2.2×10^{-11}	1.2×10^{4}	2.2×10^{-11}	1.2×10^{4}	2.2×10^{-11}	1.2×10^{4}
¹³³ I	5.1×10^{-16}	5.8×10^{-11}	1.1×10^{5}	6.0×10^{-11}	1.2×10^{5}	6.0×10^{-11}	1.2×10^{5}
¹³⁵ I	1.1×10^{-15}	$5.0 imes 10^{-11}$	4.4×10^{4}	$5.0 imes 10^{-11}$	4.4×10^{4}	5.0×10^{-11}	4.4×10^{4}
¹³⁴ Cs	1.3×10^{-15}	7.7×10^{-10}	$6.0 imes 10^{5}$	3.2×10^{-8}	2.5×10^{7}	9.1×10^{-8}	7.1×10^{7}
¹³⁷ Cs	4.7×10^{-16}	2.8×10^{-10}	$6.0 imes 10^{5}$	1.4×10^{-8}	2.9×10^{7}	1.5×10^{-7}	3.3×10^{8}
¹⁴⁰ Ba	$1.6 imes 10^{-16}$	$6.7 imes 10^{-10}$	4.1×10^{6}	2.9×10^{-9}	1.8×10^{7}	2.9×10^{-9}	1.8×10^{7}
¹⁴⁴ Ce	2.2×10^{-17}	2.7×10^{-11}	1.2×10^{6}	8.9×10^{-10}	4.0×10^{7}	1.40×10^{-9}	6.3×10^{7}
²³⁹ Np	1.9×10^{-16}	$5.0 imes 10^{-11}$	$2.6 imes 10^5$	5.7×10^{-11}	2.9×10^{5}	5.7×10^{-11}	2.9×10^{5}
²³⁸ Pu	$1.6 imes 10^{-19}$	9.9×10^{-14}	6.0×10^{5}	4.6×10^{-12}	2.8×10^{7}	2.4×10^{-11}	1.5×10^{8}
²³⁹ Pu	1.1×10^{-19}	6.4×10^{-14}	6.1×10^{5}	3.1×10^{-12}	2.9×10^{7}	2.8×10^{-11}	2.7×10^{8}
²⁴⁰ Pu	$1.6 imes 10^{-19}$	9.8×10^{-14}	$6.0 imes 10^{5}$	4.6×10^{-12}	2.8×10^{7}	2.6×10^{-11}	1.6×10^{8}
²⁴¹ Pu	2.1×10^{-21}	2.1×10^{-15}	1.0×10^{6}	5.9×10^{-13}	2.9×10^{8}	7.6×10^{-11}	$3.7 imes 10^{10}$
²⁴¹ Am	1.9×10^{-17}	1.1×10^{-11}	$6.0 imes 10^{5}$	5.5×10^{-10}	2.9×10^{7}	5.8×10^{-9}	3.1×10^{8}
²⁴² Cm	1.9×10^{-19}	1.2×10^{-13}	$6.0 imes 10^{5}$	2.9×10^{-12}	1.5×10^{7}	3.5×10^{-12}	1.8×10^{7}
$^{244}\mathrm{Cm}$	3.1×10^{-19}	1.8×10^{-13}	$6.0 imes 10^{5}$	8.6×10^{-12}	2.8×10^{7}	5.6×10^{-11}	1.8×10^{8}
注 1. 3	表中数据取自 L	AEA Safety Ser	ies No.81 号出)	版物(1986)。			
注 2: 🗄	表中数据未考虑	在建筑物内居留	留时间和建筑物	1屏蔽修正。应月	用时应采用适当	的修正因子。	表中 A 栏不是
,	恒定值,应为起势	始值或峰值。表	中C、E和G栏	的数值是以开阔	周地面上方 1 m	处的剂量积分	与单位初始剂

量率的比值表示的。

G.2 时间平均建筑物屏蔽因子 SF_{γ}

时间平均建筑物屏蔽因子取决于建筑物的屏蔽作用和人员在室内的居留时间份额。SF,可以表示

为式(G.1)。

 $SF_{\gamma} = 1 + X \times (S - 1)$ (G.1)

式中:

- SF,——考虑了人员在室内居留份额的时间平均建筑物屏蔽因子;
- X ——人员在建筑物内的居留因子,本标准建议值为 0.8;
- S ——屏蔽因子,即建筑物内的剂量率与建筑物外的剂量率之比;屏蔽因子受建筑物类型、结构、 材料、门窗面积、居住者习惯等诸多因素的影响,使用时根据具体情况确定。表 G.2 列出 了屏蔽因子 S 的建议值和 X 等于 0.8 时 SF₂的建议值。

表 G.2 不同类型建筑物对地面沉积核素 γ 辐射的屏蔽因子 S 和时间平均建筑物屏蔽因子 SF_{γ}

建筑	屏蔽因子 S 建议值	SF_{γ} $(X = 0.8)$		
砖结构平	0.25	0.4		
小刑夕日建筑	地下室	0.01	0.21	
小型多层建筑	第一层、第二层	0.1	0.28	
十刑夕日建筑	地下室	0.005	0.2	
人望多层建筑	上部各层	0.01	0.21	
注:屏蔽因子 S 的建议值是综合了 UNSCEAR 及国内相关文献资料中的值给出的,在实际应用中可根据实际情况取值。				

附录 H (资料性附录)

组织权重因数

组织权重因数见表 H.1。

表 H.1 组织权重因数

组织/器官	组织权重因数/W _T
性腺。	0.08
红骨髓	0.12
结肠 ^ь	0.12
肺	0.12
	0.12
膀胱	0.04
	0.12
肝	0.04
食道	0.04
甲状腺	0.04
皮肤	0.01
骨表面	0.01
其余组织或器官。	0.12
注:表中的数据取自 ICRP 第 103 号出版物(2007)。	

^{*} 性腺的 W_T,用于对男性睾丸和女性卵巢剂量的平均值。

^b 对结肠的剂量,按国际放射防护委员会(ICRP)第 60 号出版物(1990),取上部大肠和下部大肠剂量的质量加权 平均值。

[°] 所指定的其余组织或器官(总计14种)是:肾上腺、外胸区、胆囊、心脏、肾、淋巴结、肌肉、口腔黏膜、胰腺、前列 腺(男性)、小肠、脾、胸腺、子宫/子宫颈(女性)。

附录I

(资料性附录)

食入放射性核素剂量学参数

I.1 食物食入量

不同年龄男、女食物食入量参考值见表 I.1。

· 农 II · 小门牛般力、头茛彻茛八里穸传唱	表 I.1	不同年龄男、	女食物食入	、量参考值
--------------------------	-------	--------	-------	-------

	食物食入量参考值					
食物	g/d					
	学龄前期(男、女)	儿童期(男、女)	少年期、成人期(男)	少年期、成人期(女)		
谷物。	170	270	450	310		
豆类	15	20	25	20		
蔬菜	180	260	360	320		
水果	55	85	80	120		
肉、禽	55	70	80	60		
奶类	95	110	45	25		
蛋类	20	30	35	25		
鱼虾	40	30	40	35		
油脂			30			
饮水	500	700	1 000	800		
注 1:表中	注 1: 表中食物食入量参考值取自 GBZ/T 200.4—2009。					
注 2 :在进	e行估算时幼儿、少儿和成。	人组的参数可分别参照 G	BZ/T 200.4—2009 中学歯	令前期(5岁)、儿童期(10		
岁)、	、少年期(15岁)和成人期(2	20 岁~50 岁)的数据。				
ª 谷物包排	后薯类。					

I.2 待积有效剂量转换系数

食入单位活度核素所致的待积有效剂量见表 I.2。

表 I.2 食入单位活度核素所致的待积有效剂量(即食入剂量系数 H₂)

核素	肠转移份额	幼儿 Sv/Bq	少儿 Sv/Bq	成人 Sv/Bq
⁸⁹ Sr	3.0×10^{-1}	1.8×10^{-8}	5.8×10^{-9}	2.6×10^{-9}
⁹⁰ Sr	$3.0 imes 10^{-1}$	7.3×10^{-8}	$6.0 imes 10^{-8}$	2.8×10^{-8}
⁹⁵ Zr	1.0×10^{-2}	5.6×10^{-9}	1.9×10^{-9}	9.5×10^{-10}
$^{103}\mathrm{Ru}$	$5.0 imes 10^{-2}$	4.6×10^{-9}	1.5×10^{-9}	7.3×10^{-10}
¹⁰⁶ Ru	$5.0 imes 10^{-2}$	4.9×10^{-8}	1.5×10^{-8}	$7.0 imes 10^{-9}$
134 Cs	$1.0 \times 10^{\circ}$	1.6×10^{-8}	1.4×10^{-8}	1.9×10^{-8}
¹³⁷ Cs	$1.0 \times 10^{\circ}$	1.2×10^{-8}	1.0×10^{-8}	1.3×10^{-8}

核素	肠转移份额	幼儿 Sv/Bq	少儿 Sv/Bq	成人 Sv/Bq	
144.0	5.00/10-4	0.0.10-8	1 1 1 4 1 0 - 8	5.0.10-9	
¹⁴⁴ Ce	5.0×10^{-3}	3.9×10 °	1.1×10 °	5.2×10 °	
²³⁸ Pu	$5.0 imes 10^{-4}$	$4.0 imes 10^{-7}$	2.4×10^{-7}	2.3×10^{-7}	
²³⁹ Pu	$5.0 imes 10^{-4}$	4.2×10^{-7}	2.7×10^{-7}	2.5×10^{-7}	
²⁴⁰ Pu	$5.0 imes 10^{-4}$	4.2×10^{-7}	2.7×10^{-7}	2.5×10^{-7}	
²⁴¹ Pu	$5.0 imes 10^{-4}$	5.7×10^{-9}	5.1×10^{-9}	4.8×10^{-9}	
²⁴¹ Am	$5.0 imes 10^{-4}$	3.7×10^{-7}	2.2×10^{-7}	2.0×10^{-7}	
$^{242}\mathrm{Cm}$	$5.0 imes 10^{-4}$	$7.6 imes 10^{-8}$	2.4×10^{-8}	1.2×10^{-8}	
244 Cm	$5.0 imes 10^{-4}$	2.9×10^{-7}	1.4×10^{-7}	1.2×10^{-7}	
注 1: 在计算表中数据时假定核素都处于氧化物状态,对于其他化学状态,剂量将有所不同,这一点对钚同位素					
特别重要,因为对易溶解的或生物学结合的钚同位素,剂量可能增高100倍。					
注 2:表中核素的剂量转换系数取自 GB 18871—2002。幼儿、少儿和成人组的年龄范围分别为 0 岁~6 岁,7 岁~					
17 岁和 18	岁及以上。幼儿、少儿和	成人组的参数分别对应	于 GB 18871—2002 中 1	岁~2岁、7岁~12岁	

表 I.2 (续)

I.3 甲状腺待积当量剂量转换系数

和大于17岁的数据。

食入单位活度核素所致甲状腺待积当量剂量转换系数见表 I.3。

表 I.3 食入单位活度核素所致甲状腺待积当量剂量(即食入剂量系数 H₂)

核素	肠转移份额	幼儿 Sv/Bq	少儿 Sv/Bq	成人 Sv/Bq
¹³¹ I	1.0	$3.6 imes 10^{-6}$	1.0×10^{-6}	4.3×10^{-7}
¹³² I	1.0	$3.5 imes 10^{-8}$	8.3×10^{-9}	3.4×10^{-9}

注 1: 在计算表中数据时假定碘同位素处于元素状态。

注 2:表中核素的剂量转换系数取自 ICRP 第 67 号出版物(1993)。幼儿、少儿和成人组的年龄范围分别为 0 岁~ 6 岁、7 岁~17 岁和 18 岁以上。幼儿、少儿和成人组的参数分别对应于 ICRP 第 67 号出版物中 1 岁、10 岁 和成人的数据。

附录J

(资料性附录)

食入被污染的新鲜食物所致内照射剂量的剂量学参数

J.1 比值 G_z

新鲜食物 z 中核素比活度的1年积分值与峰值时刻该食物中核素比活度的比值见表 J.1。

表 J.1 新鲜食物 z 中核素比活度的 1 年积分值(Bq・a・L⁻¹或 Bq・a・kg⁻¹)与峰值时刻该食物中 (或牧草中)核素比活度(Bq・L⁻¹或 Bq・kg⁻¹)的比值

核素。	食物中核素比活度的1年积分值与相同食物核素峰值比活度的比值 ^b Bq・a・L ⁻¹ /(Bq・L ⁻¹)(对牛奶和饮水) Bq・a・kg ⁻¹ /(Bq・kg ⁻¹)(对其他食物)						 食物中核素比活度的1年积分值与 牧草中核素峰值比活度的比值^b Bq・a・L⁻¹/(Bq・L⁻¹)(对牛奶) Bq・a・kg⁻¹/(Bq・kg⁻¹)(对肉类) 	
	牛奶 ^{。、d}	奶制品 ^{c、d}	暴露的水果 和蔬菜 [。]	其他水果 和蔬菜 [。]	肉类等。	水和饮料	牛奶 ^f	肉类 ^f
⁸⁹ Sr	6.2×10^{-2}	6.2×10^{-2}	4.3×10^{-2}	2.0×10^{-1}	8.4×10^{-2}	2.0×10^{-1}	1.4×10^{-3}	2.8×10^{-4}
⁹⁰ Sr	1.2×10^{-1}	1.2×10^{-1}	6.1×10^{-2}	9.9×10^{-1}	1.6×10^{-1}	9.9×10^{-1}	3.0×10^{-3}	$6.3 imes 10^{-4}$
⁹⁵ Zr	3.8×10^{-2}	2.8×10^{-2}	4.3×10^{-2}	2.5×10^{-1}	7.6×10^{-2}	2.5×10^{-1}	5.5×10^{-5}	5.2×10^{-4}
$^{103}\mathrm{Ru}$	$3.7 imes 10^{-2}$	3.7×10^{-2}	3.8×10^{-2}	1.6×10^{-1}	2.0×10^{-1}	1.6×10^{-1}	1.0×10^{-6}	2.2×10^{-4}
¹⁰⁶ Ru	$4.7 imes 10^{-2}$	4.7×10^{-2}	4.9×10^{-2}	7.2×10^{-1}	5.8×10^{-1}	7.2×10^{-1}	1.4×10^{-6}	$9.7 imes 10^{-4}$
131 I	2.6×10^{-2}	2.6×10^{-2}	2.1×10^{-2}	3.2×10^{-2}	2.8×10^{-2}	3.2×10^{-2}	7.8×10^{-3}	2.5×10^{-3}
133 I	6.8×10^{-3}	6.8×10^{-3}	3.3×10^{-3}	3.4×10^{-3}	7.40×10^{-3}	3.4×10^{-3}	6.2×10^{-4}	1.7×10^{-4}
¹³⁴ Cs	$7.5 imes 10^{-2}$	7.5×10^{-2}	6.2×10^{-2}	8.5×10^{-1}	2.00×10^{-1}	8.5×10^{-1}	1.5×10^{-2}	$5.3 imes 10^{-2}$
¹³⁷ Cs	7.8×10^{-2}	7.8×10^{-2}	6.4×10^{-2}	9.9×10^{-1}	2.1×10^{-1}	9.9×10^{-1}	1.6×10^{-2}	5.6×10^{-2}
¹⁴⁴ Ce	4.2×10^{-2}	4.2×10^{-2}	4.9×10^{-2}	6.6×10^{-1}	6.7×10^{-1}	6.6×10^{-1}	4.1×10^{-5}	$8.6 imes 10^{-5}$
²³⁹ Pu ^g	5.9×10^{-1}	5.9×10^{-1}	5.1×10^{-2}	$1.0 \times 10^{\circ}$	5.9×10^{-1}	$1.0 \times 10^{\circ}$	2.5×10^{-8}	1.4×10^{-6}
$^{241}\mathrm{Am}$	$5.6 imes 10^{-1}$	5.6×10^{-1}	5.1×10^{-2}	$1.0 \times 10^{\circ}$	5.7×10^{-1}	$1.0 \times 10^{\circ}$	2.4×10^{-6}	1.3×10^{-4}
$^{242}\mathrm{Cm}$	3.2×10^{-1}	3.2×10^{-1}	4.7×10^{-2}	8.6×10^{-1}	3.2×10^{-1}	8.6×10^{-1}	1.3×10^{-6}	7.1×10^{-5}
$^{244}\mathrm{Cm}$	5.6×10^{-1}	5.6×10^{-1}	5.1×10^{-2}	9.8×10^{-1}	5.6×10^{-1}	9.8×10^{-1}	2.4×10^{-6}	1.3×10^{-4}

。假定除碘同位素呈元素状态外,其他核素均以氧化物状态从大气向地面和植物表面沉积。对于大部分核素和 食物,单位峰值比活度的时间积分比活度对核素的化学状态并不灵敏。当采用牧草中峰值比活度表示 G_z值时 (表中右边二列),锕系核素(特别是钚同位素)将对所假设的核素的化学状态灵敏。当所释放物质在动物体内 的生物学转移比所假设的氧化物状态更容易时,应采用修正的 G_z值。

^b 假定所食人的该食物全部取自同一来源和地区(即假定食人的该类食物都具有相同的初始污染水平),当食物 来源、污染水平和消费类型显著不同时(如食人的一部分来自非污染地区时),表中数值应作适当修正。

- 。假定动物全年连续食用牧草,不食用储藏饲料。
- "此值适用于奶牛,也可假定适用于其他放牧的动物如绵羊和山羊。
- "此值适用于已经准备食用的水果和蔬菜。
- "此值适用于奶牛,对其他放牧动物此值约高一倍。
- ^g 此值也适用于钚的同位素,即²³⁸Pu、²⁴⁰Pu和²⁴¹Pu。

J.2 f因子

f 因子定义为未经加工食物中放射性核素比活度与经过清洗、加工处理后食物中核素比活度的比值。对于一般清洗很难去污染或难以清洗的食物 f 近似取作 1(如牛奶、奶制品、肉类、水和饮料等),对于在消费形态下测量的水果、蔬菜和谷物类比活度的 f 值也取作 1,而对于去皮后食用或污染易于去污的食物 f 可以取 100。因此,f 值应视食物类别、清洗加工的放射性损失情况确定。

附 录 K

(资料性附录)

食入被污染的"储藏"食物所致内照射剂量的剂量学参数

"储藏"食物 z 中核素比活度的1年积分值与牧草中核素初始比活度或储藏开始时该食物核素比活度的比值见表 K.1。

表 K.1 "储藏"食物 z 中的核素比活度的 1 年积分值(Bq・a・kg⁻¹)与牧草中核素初始比活度或储藏 开始时该食物核素比活度(Bq・kg⁻¹)的比值

核素*	食物中核素比活」 牧草中核素初 Bq・a・kg ⁻¹ [食物]/(食物中核素比活度的1年积分值与 储藏开始时相同食物中核素比 活度的比值 Bq・a・kg ⁻¹ /(Bq・kg ⁻¹)					
	牛奶 ^{b、c}	肉类等 ^{b、c}	任何其他食物 ^b				
⁸⁹ Sr	4.4×10^{-3}	6.6×10^{-4}	2.0×10^{-1}				
⁹⁰ Sr	2.4×10^{-2}	4.0×10^{-3}	9.9×10^{-1}				
⁹⁵ Zr	1.8×10^{-4}	8.5×10^{-4}	2.5×10^{-1}				
¹⁰³ Ru	$4.3 imes 10^{-6}$	1.7×10^{-4}	1.6×10^{-1}				
¹⁰⁶ Ru	2.1×10^{-5}	1.2×10^{-3}	7.2×10^{-1}				
¹³¹ I	9.4×10^{-3}	2.8×10^{-3}	3.2×10^{-2}				
¹³³ I	3.1×10^{-4}	7.9×10^{-5}	3.4×10^{-3}				
134 Cs	1.7×10^{-1}	2.3×10^{-1}	8.5×10^{-1}				
¹³⁷ Cs	2.0×10^{-1}	2.7×10^{-1}	9.9×10^{-1}				
¹⁴⁴ Ce	$6.4 imes 10^{-4}$	8.5×10^{-5}	$6.6 imes 10^{-1}$				
$^{239}\mathrm{Pu}^{\mathrm{d}}$	4.3×10^{-8}	2.3×10^{-6}	$1.0 \times 10^{\circ}$				
$^{241}\mathrm{Am}$	$4.3 imes 10^{-6}$	2.3×10^{-4}	$1.0 \times 10^{\circ}$				
²⁴² Cm	$3.6 imes 10^{-6}$	1.9×10^{-4}	8.6×10 ⁻¹				
²⁴⁴ Cm	4.2×10^{-6}	2.3×10^{-4}	9.8×10^{-1}				
注:表中数据取自 IAEA Safety Series No.81 号出版物(1986)。							

。 假定除碘同位素呈元素状态外,其他核素均以氧化物状态从大气向地面和植物表面沉积。对于大部分核素和 食物,单位峰值比活度的时间积分比活度对核素的化学状态并不灵敏。然而当采用牧草比活度表示的 G₂值时 (表中第2列、第3列),锕系元素(特别是钚同位素)将对所假设的核素的化学状态灵敏。当所释放物质在动物 体内的生物学转移比所假设的氧化物状态更容易时,应采用修正的 G₂值。

^b 数值是基于下面假设计算的:食物一旦制成储藏食物,则放射性衰变是其中放射性损失的唯一途径。

。这些数值适用于奶牛,对其他草食动物(如绵羊、山羊)其数值可能高达10倍以上。

^d这些数值也适用于钚的其他同位素,主要是²³⁸ Pu、²⁴⁰ Pu 和²⁴¹ Pu。

参考文献

[1] GB 18871—2002 电离辐射防护与辐射源安全基本标准

[2] GBZ/T 200.4—2009 辐射防护用参考人 第4部分:膳食组成和元素摄入量

[3] IAEA.1986.Safety series, No.81, Procedures and data derived intervention levels for application in controlling radiation doses to the public in the event of a nuclear accident or radiological emergency, principles, procedures and data

[4] IAEA (1999) Generic procedures for monitoring in a nuclear or radiological emergency.Vienna,International Atomic Energy Agency (IAEA-TecDoc-1092)

[5] ICRP,1991.1990 Recommendations of the International Commission on Radiological Protection.ICRP Publication 60 (Users Edition)

[6] ICRP,1993.Age-dependent Doses to Members of the Public from Intake of Radionuclides— Part 2 Ingestion Dose Coefficients.ICRP Publication 67.Ann.ICRP 23 (3-4)

[7] ICRP,1995.Age-dependent Doses to Members of the Public from Intake of Radionuclides— Part 4 Inhalation Dose Coefficients.ICRP Publication 71.Ann.ICRP 25 (3-4)

[8] ICRP,2002.Basic Anatomical and Physiological Data for Use in Radiological Protection Reference Values.ICRP Publication 89.Ann.ICRP 32 (3-4)

[9] ICRP,2007.2007 Recommendations of the International Commission on Radiological Protection (Users Edition).ICRP Publication 103 (Users Edition).Ann.ICRP 37 (2-4)

[10] ICRP, 2008. Nuclear Decay Data for Dosimetric Calculations. ICRP Publication 107. Ann. ICRP 38 (3)

[11] NUREG/CR-3160.1983. Parameters and variables appearing in radiological assessment codes. Final report